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1. Introduction
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Time Series Forecasting Applications

• Time Series Forecasting holds prominent roles in many real-life applications:

Transportation Traffic forecasting for traffic management.

Healthcare
Forecasting number of  Covid patients to makes beds, isolation centers, 

oxygen etc. available.

Energy 

Management
Managing energy production as per forecasted energy usages.

Introduction
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Problem Definition

• Real-life time series data are Non-stationary.

• Two different sequences of  same real-life time series have different distribution.

Introduction

Distribution 1 Distribution 2

Fig 1: Distribution Shift in Real-life Time Series.
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Problem Definition

• Inter and Intra Series dependencies in time series data. 

Introduction

Abrupt rise at same position of  four 

different dependent time series

Fig 2: Illustration of  Inter-series relationships in 

Multivariate Scenario.

Two local maxima 

at every period

Fig 3: Illustration of  Intra-series relationship.
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Hypothesis

• Differenced datapoints are stationary and easier to forecast than the original datapoints[1].

• Differencing can be employed for obtaining stationarity.

• Simplifying the data into more understandable form can help in forecasts.

• Better forecasts can be obtained if  inter-series and intra-series relationship in the time-series data 

can be modeled.

Introduction

[1]. Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: the forecast package for R. Journal of  statistical software, 27, 1-22.
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2. Related Works
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ARIMA (Autoregressive Integrated Moving Average) [1]

• Auto Regressive: Using lagged values

Y = B0 + B1*Ylag1 + B2*Ylag2 + ... + Bn*Ylagn

• Integrated: use of  differences → Outputs a stationary time series

Yforward - Y = B0 + B1*(Y - Y_lag1) + B2*(Ylag1 - Ylag2) + …

• Moving Average: lagged prediction errors

Y = B0 + B1*Elag1 + B2*Elag2 + ... + Bn*Elagn

Related Works

[1]. Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: the forecast package for R. Journal of  statistical software, 27, 1-22.
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Main Idea: 

• Sparser query and key matrices to calculate attention: Multi-head ProbSparse

Attention.

Informer

Related Works

Fig 4: Overall Architecture of  Informer [2].

[2]. Liu, M., Zeng, A., Lai, Q., & Xu, Q. (2021). Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction. arXiv preprint arXiv:2106.09305.
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Autoformer

Related Works

[3]. Xu, J., Wang, J., & Long, M. (2021). Autoformer: Decomposition transformers with auto-correlation for long-term 
series forecasting. Advances in Neural Information Processing Systems, 34.

Fig 5: Overall Architecture of Autoformer [3].

Xt= AvgPool(Padding(X))

Xs= X - Xt
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Main Ideas: 

• Series Decomposition 

• Autocorrelation
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SCINet

Related Works

[4]. Liu, M., Zeng, A., Lai, Q., & Xu, Q. (2021). Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction. arXiv preprint arXiv:2106.09305.

Fig 6: Overall Architecture of SCINet [4].

Main Ideas: 

• Capturing multiple temporal dependencies at multiple temporal resolutions.

• Unique Interactive Learning block.
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3. Methodology
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Spectral Decomposition

Methodology

[5]. Koopmans, L. H. (1995). The spectral analysis of  time series. Elsevier.

Fig 7: Visualization of  Spectral Decomposition.

+

𝑋𝑡:𝑡+𝑇 = ෍

𝑓

𝐴 𝑓 cos 2𝜋𝑓 𝑡: 𝑡 + 𝑇 + 𝐵 𝑓 sin(2𝜋𝑓 𝑡: 𝑡 + 𝑇 )

Where, A(f) and B(f) are the

amplitudes of the sine and cosine

components at frequency f.

• Helps in realizing the comprised 

frequency components.

• This is used as a simplification 

step.

Equation Source:
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Weak-stationarizing Block

Extract

dominant

component

Value of 

Single 

period

Roll 

Back

-
Weak-

stationary 

Output

Intuition

Fig 8: Concept and Structure of  Weak-Stationarizing Block.

• Use of  differencing inspired from the ARIMA [1] model.
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Non-stationarity Restoring Block

• Non-stationary information removed by Weak-stationarizing block important for forecasting.

• Restores the non-stationary information before the forecast is made.

Fig 9: Structure of  Non-stationarity Restoring Block.
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ConvMixer

• Mixer architectures shuffle data spatially and channel-wise [6].

• This shuffling is equivalent to mixing the data in terms of  the dependent time series and in terms of  temporal 
location.

Fig 10: Structure of  Mixer Layer.
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[6]. Trockman, A., & Kolter, J. Z. (2022). Patches Are All You Need?. arXiv preprint arXiv:2201.09792.
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Overall Architecture
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Contributions

• Propose a deep learning forecasting framework to deal with both univariate and multivariate 
settings.

• ‘Weak-stationarizing’ and ‘Non-stationarity Restoring’ blocks to deal with non-stationarity of  time 
series.

• Deal with the spectral components of  time series and utilize ConvMixer [6] architecture to obtain 
quality forecasts.

• Achieve an average of  average of  21% and up to 64.6% of  relative performance improvements on 
6 real-world datasets.

Contributions

[6]. Trockman, A., & Kolter, J. Z. (2022). Patches Are All You Need?. arXiv preprint arXiv:2201.09792.
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4. Experiments
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Datasets

Experiments

• ETT [2] : Data related to electricity transformers collected.

• Electricity [7]: Data related to electricity consumption of 321 customers.

• Weather [8]: Dataset of 21 different meteorological indicators collected.

• Traffic [9]: Data related to road occupancy rate measured by different sensors on San

Francisco Bay area freeways.

• ILI [10]: Data of patients displaying influenza like illness.

• Exchange [11]: Data of daily exchange rate of eight different countries.

[7]. https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014 [8]. https://www.bgc-jena.mpg.de/wetter/ [9]. https://pems.dot.ca.gov/ [10]. https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

[11]. Lai, G., Chang, W. C., Yang, Y., & Liu, H. (2018, June). Modeling long-and short-term temporal patterns with deep neural networks. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (pp. 95-104).
21
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Results for Multivariate Settings

Experiments

Models Suggested Autoformer [4] SCINet [5] Informer [3] LogTrans [12] Reformer [13] LSTNet [11]

Datasets Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm2 96 0.183 0.259 0.255 0.339 0.413 0.470 0.365 0.453 0.768 0.642 0.658 0.619 3.142 1.365

192 0.245 0.303 0.281 0.340 0.433 0.481 0.533 0.563 0.989 0.757 1.078 0.827 3.154 1.369

336 0.307 0.348 0.339 0.372 0.633 0.580 1.363 0.887 1.334 0.872 1.549 0.972 3.160 1.369

720 0.405 0.404 0.422 0.419 0.864 0.680 3.379 1.388 3.048 1.328 2.631 1.242 3.171 1.368

Electricity 96 0.154 0.249 0.201 0.317 0.212 0.321 0.274 0.368 0.258 0.357 0.312 0.402 0.680 0.645

192 0.166 0.261 0.222 0.334 0.242 0.345 0.296 0.386 0.266 0.368 0.348 0.433 0.725 0.676

336 0.177 0.275 0.231 0.338 0.248 0.354 0.300 0.394 0.280 0.380 0.350 0.433 0.828 0.727

720 0.231 0.326 0.254 0.361 0.270 0.368 0.373 0.439 0.283 0.376 0.340 0.420 0.957 0.811

Exchange 96 0.082 0.203 0.197 0.323 0.309 0.412 0.847 0.752 0.968 0.812 1.065 0.829 1.551 1.058

192 0.149 0.283 0.300 0.369 1.354 0.783 1.204 0.895 1.040 0.851 1.188 0.906 1.477 1.028

336 0.243 0.368 0.509 0.524 1.656 0.888 1.678 1.036 1.659 1.081 1.357 0.976 1.507 1.031

720 0.509 0.559 1.447 0.941 1.272 0.855 2.478 1.310 1.941 1.127 1.510 1.016 2.285 1.243

Table 1: Results for Multivariate Setting 22
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Results for Multivariate Settings

Experiments

Models Suggested Autoformer [3] SCINet [4] Informer [2] LogTrans [12] Reformer [13] LSTNet [11]

Datasets Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Traffic 96 0.516 0.316 0.613 0.388 0.690 0.440 0.719 0.391 0.684 0.384 0.732 0.423 1.107 0.685

192 0.499 0.307 0.616 0.382 0.708 0.453 0.696 0.379 0.685 0.390 0.733 0.420 1.157 0.685

336 0.525 0.327 0.622 0.337 0.752 0.474 0.777 0.420 0.733 0.408 0.742 0.420 1.216 0.730

720 0.557 0.337 0.660 0.408 0.812 0.494 0.864 0.472 0.717 0.396 0.755 0.423 1.481 0.805

Weather 96 0.206 0.230 0.266 0.336 0.190 0.258 0.300 0.384 0.458 0.490 0.689 0.596 0.594 0.587

192 0.242 0.264 0.307 0.367 0.235 0.298 0.598 0.544 0.658 0.586 0.752 0.638 0.560 0.587

336 0.283 0.299 0.359 0.395 0.292 0.343 0.578 0.523 0.797 0.652 0.639 0.596 0.597 0.587

720 0.341 0.343 0.419 0.428 0.377 0.401 1.059 0.741 0.869 0.675 1.130 0.792 0.618 0.599

ILI 24 2.564 1.034 3.483 1.287 11.293 2.576 1.677 4.480 4.480 1.444 4.400 1.382 6.026 1.770

36 2.165 0.945 3.103 1.148 10.817 2.468 1.467 4.799 4.799 1.467 4.783 1.448 5.340 1.668

48 2.323 0.994 2.669 1.085 10.982 2.467 1.469 4.800 4.800 1.468 4.832 1.465 6.080 1.787

60 2.293 0.998 2.770 1.125 10.967 2.479 1.564 5.278 5.278 1.560 4.882 1.483 5.548 1.720

Table 2: Results for Multivariate Setting (Continued) 23
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Results for Univariate Settings

Experiments

Models Suggested Autoformer [3] SCINet [4] Informer [2] LogTrans [12] DeepAR [14] ARIMA [1]

Datasets Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTM2 96 0.071 0.190 0.065 0.189 0.0821 0.217 0.088 0.225 0.082 0.217 0.099 0.237 0.211 0.362

192 0.104 0.237 0.118 0.256 0.187 0.341 0.132 0.283 0.133 0.284 0.154 0.310 0.261 0.406

336 0.134 0.277 0.154 0.305 0.171 0.324 0.180 0.336 0.201 0.361 0.277 0.428 0.317 0.448

720 0.180 0.326 0.182 0.335 0.198 0.346 0.300 0.435 0.268 0.407 0.332 0.468 0.366 0.487

Exchange 96 0.092 0.228 0.241 0.387 0.207 0.362 0.591 0.615 0.279 0.441 0.417 0.515 0.112 0.245

192 0.184 0.348 0.273 0.403 0.395 0.497 1.183 0.912 1.950 1.048 0.813 0.735 0.304 0.404

336 0.326 0.451 0.508 0.539 0.659 0.640 1.367 0.984 2.438 1.262 1.331 0.962 0.736 0.598

720 1.036 0.791 0.991 0.768 0.875 1.872 1.872 1.072 2.010 1.247 1.894 1.181 1.871 0.935

Table 3: Results for Univariate Setting
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Visualization of  Forecasts

Experiments

(a) (b)

(c) (d)

Fig 12: Visualizing the forecasting results for ETTm2 Dataset (a) Horizon Length=96 (b) Horizon Length=96 (c) Horizon 

Length=96 (d) Horizon Length=96 25
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Visualization of  Forecasts

Experiments

(a) (b)

(c) (d)

Fig 13: Visualizing the forecasting results for Electricity Dataset (a) Horizon Length=96 (b) Horizon Length=96 (c) Horizon 

Length=96 (d) Horizon Length=96 26
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Visualization of  Forecasts

Experiments

(a) (b)

(c) (d)

Fig 14: Visualizing the forecasting results for Illness, Weather, Traffic and Exchange Datasets (a) Illness with Horizon 24 (b) 

Weather with horizon 96 (c) Traffic with horizon 192 (d) Exchange with horizon 720 27
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Ablation Study

Experiments

Models With WS and NSR Blocks Without WS and NSR Blocks

Variation Spectral Time With Skip Connection Without Skip Connection

Datasets Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

24 0.253 0.313 0.256 0.314 0.232 0.300 0.260 0.330

48 0.308 0.340 0.321 0.349 0.327 0.360 0.368 0.401

96 0.338 0.354 0.341 0.360 0.342 0.373 0.462 0.474

288 0.402 0.397 0.404 0.369 0.406 0.404 0.541 0.530

672 0.474 0.439 0.477 0.441 0.489 0.460 0.717 0.635

ECL

96 0.163 0.260 0.183 0.274 0.183 0.282 0.310 0.398

192 0.177 0.276 0.188 0.280 0.196 0.294 0.332 0.413

336 0.194 0.295 0.202 0.295 0.215 0.320 0.310 0.388

720 0.238 0.330 0.248 0.339 0.242 0.338 0.325 0.399

Exchange

96 0.086 0.207 0.092 0.215 0.298 0.417 1.048 0.830

192 0.153 0.283 0.154 0.285 0.364 0.482 1.591 1.031

336 0.243 0.368 0.252 0.378 0.397 0.475 1.984 1.114

720 0.920 0.715 0.827 0.684 0.947 0.730 2.579 1.220

Table 4: Impact of  processing the time series in spectral domain and the impact of  usage of  'Weak-stationarizing' (WS) and 

'Non-stationarity Restoring' (NSR) blocks
28
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Ablation Study

Experiments

Number of  Layers 1 2 3 4 5

Datasets Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTM1 24 0.253 0.313 0.322 0.347 0.252 0.314 0.257 0.316 0.251 0.311

48 0.308 0.340 0.316 0.345 0.305 0.338 0.316 0.346 0.310 0.342

96 0.338 0.354 0.344 0.361 0.347 0.363 0.339 0.358 0.353 0.365

288 0.402 0.397 0.402 0.395 0.406 0.397 0.406 0.398 0.415 0.404

672 0.474 0.439 0.471 0.435 0.478 0.442 0.468 0.434 0.479 0.443

ECL 96 0.163 0.260 0.158 0.256 0.156 0.254 0.156 0.253 0.154 0.251

192 0.177 0.277 0.171 0.271 0.167 0.267 0.168 0.267 0.166 0.265

336 0.194 0.295 0.185 0.286 0.194 0.295 0.184 0.287 0.183 0.285

720 0.238 0.330 0.220 0.319 0.218 0.318 0.213 0.313 0.222 0.321

Exchange 96 0.086 0.207 0.085 0.204 0.086 0.207 0.085 0.205 0.087 0.209

192 0.153 0.283 0.154 0.285 0.163 0.289 0.156 0.287 0.154 0.283

336 0.243 0.368 0.244 0.374 0.249 0.374 0.252 0.379 0.243 0.373

720 0.921 0.715 0.887 0.698 0.932 0.719 1.008 0.209 0.903 0.707

Table 5: Impact of  varying number of  ConvMixer Layers
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Efficiency Analysis

Experiments

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig 15: Run-time requirements (RTR) and Memory Consumption (MC) analysis. (a):MC for varying forecast horizon length (FHL), (b): MC for varying lookback 

window length (LWL), (c): RTR for varying FHL, (d): RTR for varying LWL, (e): MC for varying FHl (suggested), (f): MC for varying LWL (suggested), (g): RTR 

for varying FHL (suggested), (h): RTR for varying LWL (suggested) 30
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5. Conclusion
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Conclusion and Future Works

Experiments

• To obtain good quality forecasts:

• Non-stationary property of real-life time series data needs to be considered.

• Inter-series and Intra-series intricacies should be address.

• Suggested ‘Weak-stationarizing’ and ‘Non-stationarity’ restoring blocks deal with non-stationary property.

• Mixer architecture realizes the intricacies.

• State-of-the-art results have been achieved.

• The results on non-seasonal datasets need improvements.

• The suggested blocks can be modified to be used alongside existing works.

32
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